Promoting social cohesion and convergence

Desigualdades económicas y sociales en Europa tras la pandemia de COVID-19

Report
Publicado
24 Enero 2023
pdf
Formats and languages
Executive summary
Descargar

Conclusiones principales

  • Durante el primer año de la crisis de la COVID-19 el descenso de la desigualdad de ingresos continuó, lo que confirma una uniformidad de la desigualdad en la UE. Sin embargo, los demandantes de empleo y las personas con unos niveles de educación bajos y medios presentaron más probabilidades de experimentar una reducción de los ingresos durante la pandemia, lo que pone de relieve que, aunque la desigualdad de ingresos general pudo no haber aumentado durante la COVID-19, los responsables políticos tendrán que supervisar de cerca este parámetro en la actual crisis del coste de la vida.
Read more
  • Durante el primer año de la crisis de la COVID-19 el descenso de la desigualdad de ingresos continuó, lo que confirma una uniformidad de la desigualdad en la UE. Sin embargo, los demandantes de empleo y las personas con unos niveles de educación bajos y medios presentaron más probabilidades de experimentar una reducción de los ingresos durante la pandemia, lo que pone de relieve que, aunque la desigualdad de ingresos general pudo no haber aumentado durante la COVID-19, los responsables políticos tendrán que supervisar de cerca este parámetro en la actual crisis del coste de la vida.
  • La desigualdad en materia de salud guarda estrecha relación con la desigualdad de ingresos, ya que las personas encuadradas en el quintil de renta más bajo casi triplican las probabilidades de tener una discapacidad en comparación con las personas en el 20 % superior. Durante la pandemia, también aumentó la desigualdad en el acceso a los servicios sanitarios en función de los ingresos: en 2020, el riesgo de no haber visto atendida una necesidad médica entre las personas encuadradas en el quintil de renta más baja era 5,4 veces mayor que en el caso de quienes se encuentran en el 20 % superior, lo cual subraya hasta qué punto las políticas centradas en la reducción de las desigualdades en términos de ingresos también pueden reducir las desigualdades en materia de salud.
  • Las conclusiones revelan que trabajar desde casa durante la pandemia pudo haber generado desigualdades entre los grupos de renta baja y alta; los trabajadores temporales, los jóvenes y las personas con empleo precario se han revelado más vulnerables a las crisis. Para asegurarse de que esto no continúa en un contexto laboral cada vez más flexible tras la COVID-19, será fundamental que los responsables políticos aborden el trabajo precario y aumenten la transparencia y la previsibilidad de las condiciones de trabajo.
  • Durante la pandemia, disponer de equipos adecuados para el aprendizaje en línea se reveló más importante que el nivel de ingresos, lo cual pone de manifiesto la importancia de abordar a largo plazo la brecha digital y el acceso generalizado a la tecnología. La no necesidad de desplazarse durante este periodo redundó en que los padres y estudiantes residentes en zonas rurales se mostraran más satisfechos con la calidad de la educación en línea que los residentes en núcleos urbanos.
  • La capacidad de trabajar desde casa generó desigualdades entre los grupos de renta baja y alta, a la vez que acentuó problemas de desigualdad de género en relación con el cuidado de los hijos y el trabajo doméstico. En 2020, las mujeres al frente de familias monoparentales se vieron más expuestas a una reducción de su jornada laboral debido al cierre de colegios y guarderías; si las mujeres siguen trabajando más horas no remuneradas que los hombres en cuidados no remunerados, esto podría ampliar la brecha salarial de género durante la recuperación.
Read less

Resumen

La pandemia de COVID-19 tuvo diferentes repercusiones en los grupos sociales, en función de las desventajas existentes, y en general se considera que desencadenó un aumento de las desigualdades en diferentes ámbitos de la vida. A partir de los indicadores del marco de seguimiento de la desigualdaRead more

La pandemia de COVID-19 tuvo diferentes repercusiones en los grupos sociales, en función de las desventajas existentes, y en general se considera que desencadenó un aumento de las desigualdades en diferentes ámbitos de la vida. A partir de los indicadores del marco de seguimiento de la desigualdad multidimensional para la UE (MFMI), en este informe se muestra cómo evolucionó la desigualdad en los ámbitos de la renta, la salud, el empleo y la educación entre 2010 y 2020. También se examinan los principales motores de este cambio durante la pandemia y se exploran las relaciones entre las políticas gubernamentales en diversos ámbitos y la desigualdad.

Read less

Formats and languages

  • Informe

    Número de páginas: 
    102
    Número de referencia: 
    EF22002
    ISBN: 
    978-92-897-2309-1
    Catálogo nº.: 
    TJ-07-23-019-EN-N
    DOI: 
    10.2806/439913
    Catalogue info

    Desigualdades económicas y sociales en Europa tras la pandemia de COVID-19

    Formatos

    Citar esta publicación: 

    Eurofound (2023), Economic and social inequalities in Europe in the aftermath of the COVID-19 pandemic, Publications Office of the European Union, Luxembourg.

  • Executive summary

    Número de referencia: 
    EF22002EN1
    Catalogue info

    Economic and social inequalities in Europe in the aftermath of the COVID-19 pandemic

    Autor o autores: 
    Eurofound

    Disponible para su descarga en 1 idioma

    Descargar
  • Working papers

    Related working papers

  • Tables and graphs

    The report contains the following lists of tables and figures.

    List of tables

    Table 1: Indicators selected for the income inequality analysis
    Table 2: OLS regression model exploring the relationship between government spending and inequality in making ends meet according to education level
    Table 3: Panel OLS regression exploring general drivers of income inequality (1995–2020), EU27
    Table 4: OLS regression model exploring drivers of income inequality between rural and urban households
    Table 5: OLS regression model exploring income inequality by individual characteristics
    Table 6: Logistic regressions on income inequality by individual characteristics
    Table 7: Indicators selected for the health inequality analysis
    Table 8: OLS regression model exploring the relationship between government expenditure and inequality in chronic disease
    Table 9: Multilevel logit regression model on worsening health between 2019 and 2020
    Table 10: Multilevel logit regression models on worsening health and mental health between 2019 and 2020
    Table 11: Indicators selected for the employment inequality analysis
    Table 12: OLS regression model exploring the relationship between government expenditure and inequality in opportunity in having a white-collar job
    Table 13: OLS regression model exploring the relationship between gender inequality in occupations, childcare and paid leave at country level
    Table 14: OLS regression model exploring the relationship between gender inequality in being employed, childcare and paid leave at country level
    Table 15: Random effects within–between model showing the relationship between gender inequality in employment, over time and between countries
    Table 16: Multilevel linear regression model on the number of hours worked in 2019 and 2020
    Table 17: Multilevel linear regression model on the change in the number of hours worked between 2018 and 2019 and between 2019 and 2020
    Table 18: Indicators selected for inequality in education analysis
    Table 19: OLS regression model exploring the relationship between government spending and inequality in PISA scores
    Table 20: Determinants of respondents’ satisfaction with the quality of their children’s online schooling (multilevel ordered logit model)

    List of figures

    Figure 1: Dimensions of life of the EU MIMF
    Figure 2: Intersectional approach to effects of COVID-19 on inequality
    Figure 3: Macro-, meso- and micro-level factors in income inequality during the COVID-19 pandemic
    Figure 4: Heatmap showing the results of income inequality indicators by country, 2018–2019, EU27 and the UK
    Figure 5: Income quintile share ratio (S80/S20) for equivalised disposable income, EU27
    Figure 6: Gini coefficient of equivalised disposable income, EU27, Bulgaria, Greece and Poland
    Figure 7: Odds ratio of a household having problems making ends meet (with versus without a tertiary education, 2018) against spending on education (2015, % of GDP), EU27 and the UK
    Figure 8: Odds ratio of a household having problems making ends meet (with versus without a tertiary education, 2018) against spending on social protection (2015, % of GDP), EU27 and the UK
    Figure 9: Scatterplot of government spending on social protection (% of GDP at time t–1) relative to the Gini index of disposable income at time t (1995–2020), EU27
    Figure 10: Odds ratio of households having problems making ends meet (rural versus urban, 2018) against public investments in agricultural R&D (2015, % of GDP), EU27 and the UK
    Figure 11: Households that reported that their income decreased in 2020 compared with the previous year by country (%), selected Member States
    Figure 12: Households containing people aged 50+ that received financial support from the government due to the pandemic by country (%), selected European countries
    Figure 13: Recipients of pandemic-related government support by country, EU27 (%)
    Figure 14: Macro-, meso- and micro-level factors in health inequality during the COVID-19 pandemic
    Figure 15: Heatmap presenting the results of health inequality indicators, 2018–2019, EU27 and the UK
    Figure 16: Map of odds ratios of people reporting unmet medical care needs (women versus men, adjusted), 2018
    Figure 17: Heatmap of odds ratio of feeling depressed for different social groups, 2018–2019, EU27 and the UK
    Figure 18: Risk ratios of having a severe long-standing limitation in usual activities (disability) due to a health problem for various social groups (2010–2020), EU27
    Figure 19: Risk ratios of having an unmet medical need due to high cost, distance to travel or waiting lists for various social groups (2010–2020), EU27
    Figure 20: Government spending on education in 2002 (% of GDP) relative to ex ante inequality of opportunity in having two or more chronic diseases in 2019 (aged 50+), EU27
    Figure 21: Macro-, meso- and micro-level factors in inequality in working life outcomes during the COVID-19 pandemic
    Figure 22: Heatmap showing results of working life inequality indicators, 2018–2019, EU27 and the UK
    Figure 23: Risk ratios of gender inequality in various dimensions of working life (2002–2020), EU27
    Figure 24: Risk ratios of unemployment rates among various social groups (2002–2020), EU27
    Figure 25: Risk ratios of employment rates among various social groups (2002–2020), EU27
    Figure 26: Odds ratio of women being in employment versus men (2019) against the share of children under three years of age in formal childcare (2019, %), EU27
    Figure 27: Average number of weekly hours worked in 2020 by country and contract type, selected EU Member States
    Figure 28: Proportion of women who held second or third jobs by household type, 2020 (%)
    Figure 29: Macro-, meso- and micro-level factors in inequality in education and learning during the COVID-19 pandemic
    Figure 30: Heatmap showing results of education inequality indicators, 2018–2019, EU27 and the UK
    Figure 31: Difference in tertiary education attainment as a whole in 55- to 74-year-olds and those with parents with a lower than tertiary education (2021)
    Figure 32: Trends regarding inequality in education between women and men (2002–2020), EU27
    Figure 33: Risk and odds ratios of NEET rates between various social groups (2004–2020), EU27
    Figure 34: Government spending on education (2013, % of GDP) against P90/P10 PISA scores in mathematics (2018), EU27 and the UK
    Figure 35: Parents’ satisfaction with the quality of online schooling for their children, EU27 (%)
    Figure 36: Parents’ satisfaction with the quality of their children’s online schooling depending on whether they worked from home or not during the pandemic, EU27 (%)

  • Subscribe to updates

    To be notified of this publication and other publications in this area please visit the subscription management centre to update your contact details and subscription preferences.

Las investigaciones realizadas antes de que el Reino Unido abandone la Unión Europea el 31 de enero de 2020 y publicadas posteriormente pueden incluir datos sobre los 28 Estados miembros de la UE. Después de esta fecha, las investigaciones solo tienen en cuenta a los 27 Estados miembros de la UE (EU-28 menos el Reino Unido), a menos que se especifique lo contrario.

Part of the series

  • COVID-19

    Eurofound’s work on COVID-19 examines the far-reaching socioeconomic implications of the pandemic across Europe as they continue to impact living and working conditions. A key element of the research is the e-survey, launched in April 2020, with five rounds completed at different stages during 2020, 2021 and 2022. This is complemented by the inclusion of research into the ongoing effects of the pandemic in much of Eurofound’s other areas of work.

Useful? Interesting? Tell us what you think. Hide comments

Añadir nuevo comentario