Aller au contenu principal
Abstract

La pandémie de COVID-19 a eu des répercussions variables sur les groupes sociaux, en fonction des inégalités existantes, et selon toute vraisemblance, elle a entraîné une augmentation des inégalités dans différents domaines de la vie. Grâce aux indicateurs du cadre de l’UE pour le suivi des inégalités multidimensionnelles (MIMF), ce rapport montre comment les inégalités dans les domaines des revenus, de la santé, de l’emploi et de l’éducation ont évolué entre 2010 et 2020. Il examine également les principaux moteurs de ce changement pendant la pandémie et étudie les relations entre, d’une part, les politiques publiques en vigueur dans plusieurs domaines et, d’autre part, les inégalités.

Key findings

La première année de la crise de la COVID-19 a vu la baisse des inégalités de revenus se poursuivre, ce qui confirme un nivellement des inégalités dans l’UE. Toutefois, les demandeurs d’emploi et les personnes possédant un niveau d’éducation faible et moyen étaient les plus susceptibles de subir une baisse de leurs revenus pendant la pandémie, ce qui souligne que, même si les inégalités de revenus dans l’ensemble n’ont peut-être pas augmenté pendant la pandémie de COVID-19, les responsables politiques devront obligatoirement suivre cette situation de près dans le contexte actuel de crise du coût de la vie.

Les inégalités en matière de santé et de revenus sont étroitement liées, les personnes se trouvant dans le quintile inférieur en termes de revenus étant près de trois fois plus susceptibles de présenter un handicap que celles se situant dans la tranche des 20 % de revenus les plus élevés. Durant la pandémie, les inégalités en matière d’accès aux services de santé selon les revenus se sont également accentuées: en 2020, le risque de voir les besoins médicaux non satisfaits chez les personnes se trouvant dans le quintile de revenus le plus bas était 5,4 fois plus élevé que celui des personnes se situant dans la tranche des 20 % de revenus les plus élevés, ce qui montre que les politiques axées sur la réduction des inégalités de revenus peuvent également permettre de réduire les inégalités en matière de santé.

Les résultats révèlent que le travail à domicile pendant la pandémie pourrait avoir créé des inégalités entre les groupes à revenus faibles et ceux à revenus élevés, les travailleurs temporaires, les jeunes et les personnes occupant un emploi précaire étant apparus plus vulnérables aux crises. Pour enrayer cette tendance dans un monde du travail post-COVID de plus en plus flexible, les décideurs politiques devront impérativement lutter contre le travail précaire et accroître la transparence et la prévisibilité des conditions de travail.

Pendant la pandémie, le fait de disposer d’équipements adéquats pour suivre un apprentissage en ligne a été plus important que la question des revenus, soulignant ainsi l’importance de la lutte contre la fracture numérique et de l’accès à la technologie pour tous sur le long terme. Les parents et les étudiants vivant en zone rurale, qui n’ont pas eu besoin de se déplacer pendant cette période, étaient également plus susceptibles d’être satisfaits de la qualité de l’enseignement ou de la formation en ligne que ceux habitant en ville.

La capacité à travailler à domicile a créé des inégalités entre les groupes à faibles revenus et ceux à hauts revenus, accentuant les inégalités femmes-hommes pour ce qui est de la garde des enfants et des tâches ménagères. En 2020, les mères célibataires étaient plus susceptibles de réduire leur temps de travail en raison de la fermeture des écoles et des structures d’accueil des enfants. Or, si les femmes continuent de consacrer davantage de temps que les hommes aux soins non-rémunérés, cela pourrait creuser l’écart salarial entre les femmes et les hommes pendant la période de reprise.

The report contains the following lists of tables and figures.

List of tables

Table 1: Indicators selected for the income inequality analysis
Table 2: OLS regression model exploring the relationship between government spending and inequality in making ends meet according to education level
Table 3: Panel OLS regression exploring general drivers of income inequality (1995–2020), EU27
Table 4: OLS regression model exploring drivers of income inequality between rural and urban households
Table 5: OLS regression model exploring income inequality by individual characteristics
Table 6: Logistic regressions on income inequality by individual characteristics
Table 7: Indicators selected for the health inequality analysis
Table 8: OLS regression model exploring the relationship between government expenditure and inequality in chronic disease
Table 9: Multilevel logit regression model on worsening health between 2019 and 2020
Table 10: Multilevel logit regression models on worsening health and mental health between 2019 and 2020
Table 11: Indicators selected for the employment inequality analysis
Table 12: OLS regression model exploring the relationship between government expenditure and inequality in opportunity in having a white-collar job
Table 13: OLS regression model exploring the relationship between gender inequality in occupations, childcare and paid leave at country level
Table 14: OLS regression model exploring the relationship between gender inequality in being employed, childcare and paid leave at country level
Table 15: Random effects within–between model showing the relationship between gender inequality in employment, over time and between countries
Table 16: Multilevel linear regression model on the number of hours worked in 2019 and 2020
Table 17: Multilevel linear regression model on the change in the number of hours worked between 2018 and 2019 and between 2019 and 2020
Table 18: Indicators selected for inequality in education analysis
Table 19: OLS regression model exploring the relationship between government spending and inequality in PISA scores
Table 20: Determinants of respondents’ satisfaction with the quality of their children’s online schooling (multilevel ordered logit model)

List of figures

Figure 1: Dimensions of life of the EU MIMF
Figure 2: Intersectional approach to effects of COVID-19 on inequality
Figure 3: Macro-, meso- and micro-level factors in income inequality during the COVID-19 pandemic
Figure 4: Heatmap showing the results of income inequality indicators by country, 2018–2019, EU27 and the UK
Figure 5: Income quintile share ratio (S80/S20) for equivalised disposable income, EU27
Figure 6: Gini coefficient of equivalised disposable income, EU27, Bulgaria, Greece and Poland
Figure 7: Odds ratio of a household having problems making ends meet (with versus without a tertiary education, 2018) against spending on education (2015, % of GDP), EU27 and the UK
Figure 8: Odds ratio of a household having problems making ends meet (with versus without a tertiary education, 2018) against spending on social protection (2015, % of GDP), EU27 and the UK
Figure 9: Scatterplot of government spending on social protection (% of GDP at time t–1) relative to the Gini index of disposable income at time t (1995–2020), EU27
Figure 10: Odds ratio of households having problems making ends meet (rural versus urban, 2018) against public investments in agricultural R&D (2015, % of GDP), EU27 and the UK
Figure 11: Households that reported that their income decreased in 2020 compared with the previous year by country (%), selected Member States
Figure 12: Households containing people aged 50+ that received financial support from the government due to the pandemic by country (%), selected European countries
Figure 13: Recipients of pandemic-related government support by country, EU27 (%)
Figure 14: Macro-, meso- and micro-level factors in health inequality during the COVID-19 pandemic
Figure 15: Heatmap presenting the results of health inequality indicators, 2018–2019, EU27 and the UK
Figure 16: Map of odds ratios of people reporting unmet medical care needs (women versus men, adjusted), 2018
Figure 17: Heatmap of odds ratio of feeling depressed for different social groups, 2018–2019, EU27 and the UK
Figure 18: Risk ratios of having a severe long-standing limitation in usual activities (disability) due to a health problem for various social groups (2010–2020), EU27
Figure 19: Risk ratios of having an unmet medical need due to high cost, distance to travel or waiting lists for various social groups (2010–2020), EU27
Figure 20: Government spending on education in 2002 (% of GDP) relative to ex ante inequality of opportunity in having two or more chronic diseases in 2019 (aged 50+), EU27
Figure 21: Macro-, meso- and micro-level factors in inequality in working life outcomes during the COVID-19 pandemic
Figure 22: Heatmap showing results of working life inequality indicators, 2018–2019, EU27 and the UK
Figure 23: Risk ratios of gender inequality in various dimensions of working life (2002–2020), EU27
Figure 24: Risk ratios of unemployment rates among various social groups (2002–2020), EU27
Figure 25: Risk ratios of employment rates among various social groups (2002–2020), EU27
Figure 26: Odds ratio of women being in employment versus men (2019) against the share of children under three years of age in formal childcare (2019, %), EU27
Figure 27: Average number of weekly hours worked in 2020 by country and contract type, selected EU Member States
Figure 28: Proportion of women who held second or third jobs by household type, 2020 (%)
Figure 29: Macro-, meso- and micro-level factors in inequality in education and learning during the COVID-19 pandemic
Figure 30: Heatmap showing results of education inequality indicators, 2018–2019, EU27 and the UK
Figure 31: Difference in tertiary education attainment as a whole in 55- to 74-year-olds and those with parents with a lower than tertiary education (2021)
Figure 32: Trends regarding inequality in education between women and men (2002–2020), EU27
Figure 33: Risk and odds ratios of NEET rates between various social groups (2004–2020), EU27
Figure 34: Government spending on education (2013, % of GDP) against P90/P10 PISA scores in mathematics (2018), EU27 and the UK
Figure 35: Parents’ satisfaction with the quality of online schooling for their children, EU27 (%)
Figure 36: Parents’ satisfaction with the quality of their children’s online schooling depending on whether they worked from home or not during the pandemic, EU27 (%)

Number of pages
102
Reference nº
EF22002
ISBN
978-92-897-2309-1
Catalogue nº
TJ-07-23-019-EN-N
DOI
10.2806/439913
Permalink

Cite this publication

Disclaimer

When freely submitting your request, you are consenting Eurofound in handling your personal data to reply to you. Your request will be handled in accordance with the provisions of Regulation (EU) 2018/1725 of the European Parliament and of the Council of 23 October 2018 on the protection of natural persons with regard to the processing of personal data by the Union institutions, bodies, offices and agencies and on the free movement of such data. More information, please read the Data Protection Notice.